| Surname | | | Other Names | | | | | | | |---------------------|--|-----|-------------|--|--|--------|------------|--|--| | Centre Number | | | | | | Candid | ate Number | | | | Candidate Signature | | ure | | | | | | | | General Certificate of Education June 2005 Advanced Subsidiary Examination **PA01** # PHYSICS (SPECIFICATION A) Unit 1 Particles, Radiation and Quantum Phenomena Friday 10 June 2005 Morning Session #### In addition to this paper you will require: - a calculator; - a pencil and a ruler. Time allowed: 1 hour #### **Instructions** - Use blue or black ink or ball-point pen. - Fill in the boxes at the top of this page. - Answer all questions in the spaces provided. All working must be shown. - Do all rough work in this book. Cross through any work you do not want marked. #### **Information** - The maximum mark for this paper is 50. - Mark allocations are shown in brackets. - The paper carries 30% of the total marks for Physics Advanced Subsidiary and carries 15% of the total marks for Physics Advanced. - A *Data Sheet* is provided on pages 3 and 4. You may wish to detach this perforated sheet at the start of the examination. - You are expected to use a calculator where appropriate. - In questions requiring description and explanation you will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary where appropriate. The degree of legibility of your handwriting and the level of accuracy of your spelling, punctuation and grammar will also be taken into account. | | For Examiner's Use | | | | | | |------------------|---------------------|-------------|------|--|--|--| | Number | Mark | Number | Mark | | | | | 1 | | | | | | | | 2 | | | | | | | | 3 | | | | | | | | 4 | | | | | | | | 5 | | | | | | | | 6 | Total
(Column | 1) | > | | | | | | Total (Column 2) | | | | | | | | TOTAL | | | | | | | | Examine | Examiner's Initials | | | | | | S05/PA01 PA01 ## **Data Sheet** - A perforated *Data Sheet* is provided as pages 3 and 4 of this question paper. - This sheet may be useful for answering some of the questions in the examination. - You may wish to detach this sheet before you begin work. | Fundamental constants | and valu | ies | | |--|------------------|-------------------------|-----------------------------------| | Quantity | Symbol | Value | Units | | speed of light in vacuo | c | 3.00×10^{8} | m s ⁻¹ | | permeability of free space | μ_0 | $4\pi \times 10^{-7}$ | H m ⁻¹ | | permittivity of free space | ϵ_0 | 8.85×10^{-12} | F m ⁻¹ | | charge of electron | e | 1.60×10^{-19} | C | | the Planck constant | h | 6.63×10^{-34} | Js | | gravitational constant | G | 6.67×10^{-11} | N m ² kg ⁻² | | the Avogadro constant | $N_{\rm A}$ | 6.02×10^{23} | mol ⁻¹ | | molar gas constant | R | 8.31 | J K ⁻¹ mol | | the Boltzmann constant | k | 1.38×10^{-23} | J K ⁻¹ | | the Stefan constant | σ | 5.67×10^{-8} | W m ⁻² K ⁻⁴ | | the Wien constant | α | 2.90×10^{-3} | m K | | electron rest mass | $m_{\rm e}$ | 9.11×10^{-31} | kg | | (equivalent to 5.5×10^{-4} u) | | | | | electron charge/mass ratio | e/m _e | 1.76×10^{11} | C kg ⁻¹ | | proton rest mass | $m_{\rm p}$ | 1.67×10^{-27} | kg | | (equivalent to 1.00728u) | | _ | | | proton charge/mass ratio | $e/m_{\rm p}$ | 9.58×10^{7} | C kg ⁻¹ | | neutron rest mass | $m_{\rm n}$ | 1.67×10^{-27} | kg | | (equivalent to 1.00867u) | | | | | gravitational field strength | | 9.81 | N kg ⁻¹ | | acceleration due to gravity | g | 9.81 | m s ⁻² | | atomic mass unit | u | 1.661×10^{-27} | kg | | (1u is equivalent to | | | | | 931.3 MeV) | | | | #### **Fundamental particles** | | • | | | |---------|----------|---|-------------| | Class | Name | Symbol | Rest energy | | | | | /MeV | | photon | photon | γ | 0 | | lepton | neutrino | $ u_{\rm e}$ | 0 | | | | $ u_{\mu}$ | 0 | | | electron | $\begin{array}{c} \nu_{\mu} \\ e^{\pm} \end{array}$ | 0.510999 | | | muon | μ^{\pm} | 105.659 | | mesons | pion | π^{\pm} | 139.576 | | | | π^0 | 134.972 | | | kaon | K^{\pm} | 493.821 | | | | K^0 | 497.762 | | baryons | proton | p | 938.257 | | | neutron | n | 939.551 | | | | | | #### Properties of quarks | Туре | Charge | Baryon
number | Strangeness | |------|----------------|------------------|-------------| | u | $+\frac{2}{3}$ | $+\frac{1}{3}$ | 0 | | d | $-\frac{1}{3}$ | $+\frac{1}{3}$ | 0 | | s | $-\frac{1}{3}$ | $+\frac{1}{3}$ | -1 | #### Geometrical equations arc length = $r\theta$ circumference of circle = $2\pi r$ area of circle = πr^2 area of cylinder = $2\pi rh$ volume of cylinder = $\pi r^2 h$ area of sphere = $4\pi r^2$ volume of sphere = $\frac{4}{3}\pi r^3$ # Mechanics and Applied Physics $$v = u + at$$ $$s = \left(\frac{u+v}{2}\right)t$$ $$s = ut + \frac{at^2}{2}$$ $$v^2 = u^2 + 2as$$ $$F = \frac{\Delta(mv)}{\Delta t}$$ $$P = Fv$$ $$efficiency = \frac{power\ output}{power\ input}$$ $$\omega = \frac{v}{r} = 2\pi f$$ $$a = \frac{v^2}{r} = r\omega^2$$ $$I = \sum mr^2$$ $$E_{\mathbf{k}} = \frac{1}{2} I\omega^2$$ $$\omega_2 = \omega_1 + \alpha t$$ $$\theta = \omega_1 t + \frac{1}{2} \alpha t^2$$ $$\omega_2^2 = \omega_1^2 + 2\alpha\theta$$ $$\theta = \frac{1}{2} \left(\omega_1 + \omega_2 \right) t$$ $$T = I\alpha$$ angular momentum = $I\omega$ $W = T\theta$ $P = T\omega$ angular impulse = change of angular momentum = Tt $\Delta Q = \Delta U + \Delta W$ $\Delta W = p\Delta V$ $pV^{\gamma} = constant$ work done per cycle = area of loop input power = calorific value × fuel flow rate indicated power as (area of p - V loop) \times (no. of cycles/s) \times (no. of cylinders) friction power = indicated power - brake power $$efficiency = \frac{W}{Q_{in}} = \frac{Q_{in} - Q_{out}}{Q_{in}}$$ maximum possible $$efficiency = \frac{T_{\rm H} - T_{\rm C}}{T_{\rm H}}$$ #### Fields, Waves, Quantum Phenomena $$g = \frac{F}{m}$$ $$g = -\frac{GM}{c^2}$$ $$g = -\frac{\Delta V}{\Delta x}$$ $$V = -\frac{GM}{r}$$ $$a = -(2\pi f)^2 x$$ $$v = \pm 2\pi f \sqrt{A^2 - x^2}$$ $$x = A \cos 2\pi f t$$ $$T = 2\pi \sqrt{\frac{I}{g}}$$ $$\lambda = \frac{\omega s}{D}$$ $$d \sin \theta = n\lambda$$ $$\theta \approx \frac{\lambda}{D}$$ $$1^{n_2} = \frac{\sin \theta_1}{\sin \theta_2} = \frac{c_1}{c_2}$$ $$1^{n_2} = \frac{n_2}{n_1}$$ $$\sin \theta_c = \frac{1}{n}$$ $$E = hf$$ $$hf = \phi + E_k$$ $$hf = E_1 - E_2$$ $$\lambda = \frac{h}{p} = \frac{h}{mv}$$ $$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$ # Electricity $$\epsilon = \frac{E}{Q}$$ $$\epsilon = I(R+r)$$ $$\frac{1}{R_{\rm T}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$$ $$R_{\rm T} = R_1 + R_2 + R_3 + \cdots$$ $$P = I^2 R$$ $$E = \frac{F}{Q} = \frac{V}{d}$$ $$E = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$$ $$E = \frac{1}{2} QV$$ $$F = BII$$ $$F = BQv$$ $$Q = Q_0 e^{-t/RC}$$ $$\Phi = BA$$ Turn over magnitude of induced e.m.f. = $N \frac{\Delta \Phi}{\Delta t}$ $$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$$ $$V_{\rm rms} = \frac{V_0}{\sqrt{2}}$$ # **Mechanical and Thermal Properties** the Young modulus = $$\frac{tensile\ stress}{tensile\ strain} = \frac{F}{A} \frac{l}{e}$$ energy stored = $\frac{1}{2}$ Fe $$\Delta Q = mc \ \Delta \theta$$ $$\Delta Q = ml$$ $$pV = \frac{1}{3} Nm\overline{c^2}$$ $$\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT = \frac{3RT}{2N_A}$$ # **Nuclear Physics and Turning Points in Physics** $$force = \frac{eV_{p}}{d}$$ $$force = Bev$$ radius of curvature = $$\frac{mv}{Be}$$ $$\frac{eV}{d} = mg$$ $work\ done = eV$ $$F = 6\pi \eta r v$$ $$I = k \frac{I_0}{r^2}$$ $$\frac{\Delta N}{\Delta t} = -\lambda N$$ $$\lambda = \frac{h}{\sqrt{2meV}}$$ $$N = N_0 e^{-\lambda t}$$ $$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$$ $$R = r_0 A^{\frac{1}{3}}$$ $$E = mc^{2} = \frac{m_{0}c^{2}}{\left(1 - \frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}}$$ $$I = I_{0} \left(1 - \frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}$$ $$l = l_0 \left(1 - \frac{v^2}{c^2} \right)^{\frac{1}{2}}$$ $$t = \frac{t_0}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$ # **Astrophysics and Medical Physics** Body Mass/kg Mean radius/m 2.00×10^{30} 7.00×10^{8} Sun 6.00×10^{24} 6.40×10^{6} Earth 1 astronomical unit = 1.50×10^{11} m 1 parsec = $206265 \text{ AU} = 3.08 \times 10^{16} \text{ m} =$ 1 light year = 9.45×10^{15} m Hubble constant $(H) = 65 \text{ km s}^{-1} \text{ Mpc}^{-1}$ angle subtended by image at eye angle subtended by object at unaided eye $$M = \frac{f_{\rm o}}{f_{\rm c}}$$ $$m - M = 5 \log \frac{d}{10}$$ $\lambda_{\text{max}}T = \text{constant} = 0.0029 \text{ m K}$ v = Hd $P = \sigma A T^4$ $$\frac{\Delta f}{f} = \frac{v}{c}$$ $$\frac{\Delta\lambda}{\lambda} = -\frac{\nu}{c}$$ $$R_{\rm s} \approx \frac{2GM}{c^2}$$ ### **Medical Physics** $power = \frac{1}{\epsilon}$ $$\frac{1}{u} + \frac{1}{v} = \frac{1}{f} \text{ and } m = \frac{v}{u}$$ intensity level = $10 \log \frac{I}{I_0}$ $I = I_0 e^{-\mu x}$ $$\mu_{\rm m} = \frac{\mu}{\rho}$$ #### **Electronics** Resistors Preferred values for resistors (E24) Series: 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 ohms and multiples that are ten times greater $$Z = \frac{V_{\rm rms}}{I_{\rm rms}}$$ $$\frac{1}{C_{\rm T}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$$ $$C_{\mathrm{T}} = C_1 + C_2 + C_3 + \cdots$$ $$X_{\rm C} = \frac{1}{2\pi f C}$$ # **Alternating Currents** $$f = \frac{1}{T}$$ # **Operational** amplifier $$G = \frac{V_{\text{out}}}{V_{\text{in}}} \qquad \text{voltage gain}$$ $$G = -\frac{R_{\rm f}}{R_{\rm 1}}$$ inverting $$G = 1 + \frac{R_f}{R_1}$$ non-inverting $$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$$ summing # Answer all questions. | 1 | (a) | What | are isotopes? | |---|-----|-------|---| ••••• | | | | | | (2 marks) | | | (b) | One | of the isotopes of nitrogen may be represented by $^{15}_{7}$ N. | | | | (i) | State the number of each type of particle in its nucleus. | | | | (1) | state the number of each type of particle in its nucleus. | | | | | | | | | | | | | | (ii) | Determine the ratio $\frac{\text{charge}}{\text{mass}}$, in C kg ⁻¹ , of its nucleus. | (4 marks) | | | (c) | (i) | What is the charge, in C, of an atom of $^{15}_{7}$ N from which a single electron has been | | | (0) | (1) | removed? | | | | | | | | | (ii) | What name is used to describe an atom from which an electron has been removed? | | | | (11) | what hame is used to describe an atom from which an election has been felhoved? | | | | | (2 marks) | | | | | | $\left(\frac{1}{8}\right)$ 2 Some energy levels of an atom of a gas are shown in Figure 1. Figure 1 When a current is passed through the gas at low pressure, a line spectrum is produced. Two of these lines, which correspond to transitions from levels B and C respectively to the ground state, are shown in **Figure 2**. Figure 2 | | may be awarded marks for the quality of written communication in your answer. | |-------|---| | | | | | | | ••••• | | | | | | | | | | | | | (3 marks | | Dete | rmine the energy, in J, of | | (i) | the photons responsible for each of the two lines shown in Figure 2, | (ii) | levels B and C in Figure 1 . | | (ii) | levels B and C in Figure 1. | | (ii) | levels B and C in Figure 1 . | | (ii) | | | (ii) | levels B and C in Figure 1 . energy of level B = | 3 The equation represents the collision of a neutral kaon with a proton, resulting in the production of a neutron and a positive pion. $K^{\circ} + p \longrightarrow n + \pi^{+}$ (a) Show that this collision obeys **three** conservation laws in addition to energy and momentum. (3 marks) (b) The neutral kaon has a strangeness of +1. Write down the quark structure of the following particles. K°..... π^+ p (4 marks) 4 The diagram shows a cube of glass. A ray of light, incident at the centre of a face of the cube, at an angle of incidence θ , goes on to meet another face at an angle of incidence of 50°, as shown in **Figure 3**. critical angle at the glass-air boundary = 45° Figure 3 | (a) | Draw on the diagram the continuation of the path of the ray, showing it passing through | n the gla | ass | |-----|---|-----------|-----| | | and out into the air. | (3 mark | ks) | | (b) | Show that the refractive index of the glass is 1.41. | | |-----|--|--------------| | | | | | | | | | | (2 |
? marks) | | (c) | Calculate the angle of incidence, θ . | ŕ | | | | ••••• | | | | | | | | | | | |
3 marks) | (2 marks) 5 (a) Explain what is meant by the term *work function* of a metal. (b) In an experiment on the photoelectric effect, the maximum kinetic energy of the emitted photoelectrons is measured over a range of incident light frequencies. The results obtained are shown in **Figure 4**. (i) A metal of work function ϕ is illuminated with light of frequency f. Write down the equation giving the maximum kinetic energy, $E_{\rm K}$, of the photoelectrons emitted in terms of ϕ and f. $E_{\rm K} =$ (ii) Use the data in Figure 4 to determine the work function of the metal. | | (iii) | Determine the maximum kinetic energy of the photoelectrons when the frequency of the incident radiation is $2.5 \times 10^{15} \text{Hz}$. | |-----|-------|--| | | | | | | | | | | | | | | | (6 marks) | | (c) | The | experiment is repeated but with the light incident on a metal of lower work function. | | | Draw | y a new line on Figure 4 that results from this change. (2 marks) | TURN OVER FOR THE NEXT QUESTION | 6 | (a) | (i) | Complete the equation that represents the collision between a proton and an antineutrino. | |---|-----|-------|---| | | | | $\overline{\nu_e} + p \longrightarrow$ | | | | (ii) | What fundamental force is responsible for the interaction shown in part (i)? | | | | (iii) | Name an exchange particle that could be involved in this interaction. | | | | | (4 marks) | | | (b) | Desc | ribe what happens in pair production and give one example of this process. | | | | You 1 | may be awarded marks for the quality of written communication in your answer. | | | | ••••• | | | | | ••••• | ••••• | (3 marks) | | | | | | QUALITY OF WRITTEN COMMUNICATION (2 marks) END OF QUESTIONS