PHYSICS (SPECIFICATION A)
PA04
Unit 4 Waves, Fields and Nuclear Energy

Section A

Wednesday 21 January $2009 \quad 9.00$ am to 10.30 am

For this paper you must have:

- an objective test answer sheet
- a black ball-point pen
- a calculator
- a question paper/answer book for Section B (enclosed).

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes

Instructions

- Use a black ball-point pen. Do not use pencil.
- Answer all questions in this section.
- For each question there are four responses. When you have selected the response which you think is the most appropriate answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book not on the answer sheet.

Information

- The maximum mark for this section is 30 .
- All questions in Section A carry equal marks. No deductions will be made for incorrect answers.
- A Data Sheet is provided as a loose insert.
- The question paper/answer book for Section B is enclosed within this question paper.

SECTION A

In this section each item consists of a question or an incomplete statement followed by four suggested answers or completions. You are to select the most appropriate answer in each case.

You are advised to spend about $\mathbf{3 0}$ minutes on this section.

1 The tip of each prong of a tuning fork emitting a note of frequency 320 Hz vibrates in simple harmonic motion with an amplitude of 0.50 mm .
What is the speed of each tip when its displacement is zero?
A zero
B $\quad 0.32 \pi \mathrm{~mm} \mathrm{~s}^{-1}$
C $\quad 160 \pi \mathrm{~mm} \mathrm{~s}^{-1}$
D $320 \pi \mathrm{mms}^{-1}$

2 What is the phase difference between the acceleration and the displacement for a particle moving with simple harmonic motion?

A $\quad \frac{\pi}{2}$ radians
B $\quad \pi$ radians
C $\frac{3 \pi}{2}$ radians
D 2π radians

3 Which one of the following statements is not an application of polarisation?
A to show the strain in materials such as glass
B to reduce glare when taking photographs
C to transmit and receive radio waves
D to transmit and receive ultrasonic waves

4 Two identical waves, having a period of $2.5 \times 10^{-3} \mathrm{~s}$, and travelling in opposite directions along the same line, form a stationary wave. If the distance between adjacent nodes is 0.40 m , what is the speed of each wave?

A $\quad 160 \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 320 \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 400 \mathrm{~m} \mathrm{~s}^{-1}$
D $\quad 480 \mathrm{~m} \mathrm{~s}^{-1}$

5 A parallel beam of monochromatic light is directed normally at a plane transmission grating which has 600 lines per millimetre. A third order diffracted beam is observed at an angle of 54° to the zero order diffracted beam.

Which line, A to \mathbf{D}, in the table gives the wavelength of the light and the angle of diffraction of the first order beam?

	wavelength / $\mathbf{n m}$	angle of diffraction of first order
A	450	16°
B	450	18°
C	520	16°
D	520	18°

Turn over for the next question

6

When switch S is closed, the capacitor of capacitance C begins to charge from the cell of emf \in through the resistor of resistance R. The initial current in the circuit is I.

The time taken for the current to decrease to $\frac{I}{2}$ is determined by the value(s) of
A $\quad \in$ and R.
B \in and C.
C $\quad C$ and R.
D $\quad C$ alone.

7 A revolving mountain top restaurant turns slowly, completing a full rotation in 50 minutes. A man sits in the restaurant 15 m from the axis of rotation.
What is the speed of the man?

A $\quad \frac{\pi}{100} \mathrm{~ms}^{-1}$
B $\quad \frac{3 \pi}{5} \mathrm{~m} \mathrm{~s}^{-1}$

C $\quad \frac{\pi}{200} \mathrm{~m} \mathrm{~s}^{-1}$
D $\quad \frac{\pi}{1500} \mathrm{~m} \mathrm{~s}^{-1}$

8 The gravitational field strength at the surface of the Earth, of radius R, is g and the weight of an object on the surface is W. The object is now taken to a distance of $3 R$ from the centre of the Earth. Which line, \mathbf{A} to \mathbf{D}, in the table gives the weight of the object and the gravitational field strength at this distance?

	weight	gravitational field strength
A	$\frac{W}{9}$	$\frac{g}{9}$
B	$\frac{W}{9}$	$\frac{g}{3}$
C	$\frac{W}{4}$	$\frac{g}{4}$
D	$\frac{W}{3}$	$\frac{g}{3}$

9 Which one of the following is a quantity that can be resolved into different directions?
A electrical potential
B gravitational potential
C electric field strength
D induced emf

10 The graph shows how the gravitational potential, V, varies with the distance, r, from the centre of the Earth.

What does the gradient of the graph at any point represent?
A the mass of the Earth
B the magnitude of the gravitational constant
C the magnitude of the gravitational field strength at that point
D the potential energy at the point where the gradient is measured

11 A positive ion, with a charge/mass ratio of $2.40 \times 10^{7} \mathrm{Ckg}^{-1}$, is stationary in a vertical electric field. Which line, \mathbf{A} to \mathbf{D}, in the table shows correctly both the strength and the direction of the electric field?

	electric field strength $/ \mathbf{V ~ m}^{\mathbf{- 1}}$	direction
A	4.09×10^{-7}	upwards
B	4.09×10^{-7}	downwards
C	2.45×10^{6}	upwards
D	2.45×10^{6}	downwards

12

The diagram shows how the electric potential varies along a line XY in an electric field. What will be the electric field strength at a point P on XY , which is mid-way between R and S ?

A $\quad 5.0 \mathrm{Vm}^{-1}$
B $\quad 10 \mathrm{Vm}^{-1}$
C $\quad 20 \mathrm{Vm}^{-1}$
D $\quad 30 \mathrm{Vm}^{-1}$

13 An α particle moves in a circular path at a speed of $7.5 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$ in a plane perpendicular to a uniform magnetic field of flux density $1.5 \times 10^{-2} \mathrm{~T}$. The force acting on the α particle is

A $\quad 1.8 \times 10^{-14} \mathrm{~N}$ parallel to the direction of the field.
B $\quad 3.6 \times 10^{-14} \mathrm{~N}$ parallel to the direction of the field.
C $1.8 \times 10^{-14} \mathrm{~N}$ perpendicular to the direction of the field.
D $3.6 \times 10^{-14} \mathrm{~N}$ perpendicular to the direction of the field.

14 The mass of the ${ }_{4}^{7} \mathrm{Be}$ beryllium nucleus is 7.01473 u .
What is the binding energy per nucleon of this nucleus?
Use information from the Data Sheet.
A $\quad 1.6 \mathrm{MeV}$ nucleon ${ }^{-1}$
B $\quad 5.4 \mathrm{MeV}$ nucleon ${ }^{-1}$
C $\quad 9.4 \mathrm{MeV}$ nucleon ${ }^{-1}$
D 12.5 MeV nucleon ${ }^{-1}$

15 In a thermal reactor, induced fission is caused by the ${ }_{92}^{235} \mathrm{U}$ nucleus capturing a neutron, undergoing fission and producing more neutrons. Which one of the following statements is true?

A To sustain the reaction a large number of neutrons is required per fission.
B The purpose of the moderator is to absorb all the heat produced.
C The neutrons required for induced fission of ${ }_{92}^{235} \mathrm{U}$ should be slow neutrons.
D The purpose of the control rods is to slow down neutrons to thermal speeds.

END OF SECTION A

