General Certificate of Education

June 2008
Advanced Level Examination

PHYSICS (SPECIFICATION A)
PA04
Unit 4 Waves, Fields and Nuclear Energy

Section A

Wednesday 11 June 2008 9.00 am to 10.30 am

For this paper you must have:

- an objective test answer sheet
- a black ball-point pen
- a calculator
- a question paper/answer book for Section B (enclosed)
- a data sheet insert.

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes.

Instructions

- Use a black ball-point pen. Do not use a pencil.
- Answer all questions in this section.
- For each question there are four responses. When you have selected the response which you think is the most appropriate answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book not on the answer sheet.

Information

- The maximum mark for this paper is 30 .
- All questions in Section A carry equal marks. No deductions will be made for incorrect answers.
- A Data Sheet is provided as a loose insert to this question paper.
- The question paper/answer book for Section B is enclosed within this question paper.

SECTION A

In this section each item consists of a question or an incomplete statement followed by four suggested answers or completions. You are to select the most appropriate answer in each case.

1 Which one of the following statements concerning the acceleration of an object moving with simple harmonic motion is correct?

A It is constant.
B It is at a maximum when the object moves through the centre of the oscillation.
C It is zero when the object moves through the centre of the oscillation.
D It is zero when the object is at the extremity of the oscillation.

2 When the length of a simple pendulum is decreased by 600 mm , the period of oscillation is halved. What was the original length of the pendulum?

A $\quad 800 \mathrm{~mm}$
B $\quad 1000 \mathrm{~mm}$
C $\quad 1200 \mathrm{~mm}$
D 1400 mm

The graph shows, at a particular instant, the variation of the displacement of the particles in a transverse progressive water wave, of wavelength 4 cm , travelling from left to right. Which one of the following statements is not true?

A Particles at P and R are in a phase.
B The velocity of the particle at Q is a maximum.
C The particle at S is moving downwards.
D The distance $\mathrm{PS}=3 \mathrm{~cm}$.

4 Which one of the following statements is not correct?
Progressive longitudinal waves can
A show interference effects.
B be diffracted.
C superpose to form a stationary wave.
D be polarised.

5 Light of wavelength 590 nm is incident normally on a diffraction grating with 500 lines per mm.
What is the maximum number of orders that will be observed in the light emerging from the grating?

A 2
B 3
C 4
D 5

6 An uncharged capacitor of fixed capacitance is connected in series with a switch and battery. The switch is closed at time $t=0$. Which graph, A to \mathbf{D}, shows how the energy, E, stored by the capacitor, changes with time, t, after the switch is closed?

7 The voltage across a capacitor falls from 10 V to 5 V in 48 ms as it discharges through a resistor. What is the time constant of the circuit?

A $\quad 24 \mathrm{~ms}$
B $\quad 33 \mathrm{~ms}$
C $\quad 69 \mathrm{~ms}$
D 96 ms

8 The wheel of the London Eye has a diameter of 130 m and can rotate at a steady speed, completing one rotation every 30 minutes. What is the centripetal acceleration of a person in a capsule at the rim?

A $\quad 1.2 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-2}$
B $\quad 2.5 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-2}$
C $\quad 3.9 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-2}$
D $\quad 7.9 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-2}$

9 Which one of the following has different units to the other three?
A gravitational potential gradient
B gravitational field strength
C force per unit mass
D gravitational potential

10 A charged particle of mass $4.80 \times 10^{-13} \mathrm{~kg}$ and charge $8.00 \times 10^{-19} \mathrm{C}$ is stationary in a vertical electric field. What is the value of the electric field?
(Assume that the gravitational field strength is $10.0 \mathrm{Nkg}^{-1}$)
A $\quad 6.00 \times 10^{5} \mathrm{Vm}^{-1}$
B $\quad 1.67 \times 10^{6} \mathrm{Vm}^{-1}$
C $\quad 6.00 \times 10^{6} \mathrm{Vm}^{-1}$
D $\quad 1.67 \times 10^{7} \mathrm{Vm}^{-1}$

11 The diagram shows four point charges, each $+Q$, at the corners of a square of side $2 a$. What is the electric field strength at P , the centre of the square?

A zero
B $\frac{Q}{4 \pi \varepsilon_{0} a^{2}}$
C $\frac{Q}{2 \pi \varepsilon_{0} a^{2}}$
D $\frac{Q}{\pi \varepsilon_{0} a^{2}}$

12 An α particle and a β^{-}particle both enter the same uniform magnetic field, which is perpendicular to their direction of motion. If the β^{-}particle has a speed 15 times that of the α particle, what is the value of the ratio

$$
\frac{\text { magnitude of the force on the } \beta^{-} \text {particle }}{\text { magnitude of the force on the } \alpha \text { particle }} \text { ? }
$$

A $\quad 3.7$
B $\quad 7.5$
C 60.0
D 112.5

13 If 1 g of matter is completely transformed into energy, how much energy is released?
A $\quad 9.0 \times 10^{13} \mathrm{MeV}$
B $\quad 9.0 \times 10^{16} \mathrm{MeV}$
C $5.6 \times 10^{23} \mathrm{MeV}$
D $5.6 \times 10^{26} \mathrm{MeV}$

14 Which one of the following statements correctly describes the changes that occur when a uranium nucleus undergoes fission?

A The binding energy per nucleon decreases and one or more neutrons are released.
B The binding energy per nucleon decreases and one or more protons are released.
C The binding energy per nucleon increases and one or more neutrons are released.
D The binding energy per nucleon increases and one or more protons are released.

15 A nucleus of ${ }_{92}^{235} \mathrm{U}$ absorbs a neutron and undergoes fission. Which one of the following gives possible products of this process?

A $\quad 2{ }_{2}^{4} \mathrm{He}+{ }_{88}^{228} \mathrm{Ra}$

B $\quad{ }_{56}^{141} \mathrm{Ba}+{ }_{36}^{92} \mathrm{Kr}+3{ }_{0}^{1} \mathrm{n}$

C $\quad 2{ }_{-1}^{0} \mathrm{e}+{ }_{94}^{236} \mathrm{Pu}$

D $\quad{ }_{84}^{212} \mathrm{Po}+4{ }_{2}^{4} \mathrm{He}+8{ }_{0}^{1} \mathrm{n}$

END OF SECTION A

There are no questions printed on this page

There are no questions printed on this page

