Surname			Other	Names				
Centre Number					Cand	idate Number		
Candidate Signature								

For Examiner's Use

General Certificate of Education June 2009 Advanced Level Examination

AQA/

PHYSICS (SPECIFICATION A) Unit 5 Nuclear Instability: Astrophysics Option

Wednesday 10 June 2009 1.30 pm to 2.45 pm

For this paper you must have:

- a pencil
- a ruler
- a calculator
- a Data Sheet insert.

Time allowed: 1 hour 15 minutes

Instructions

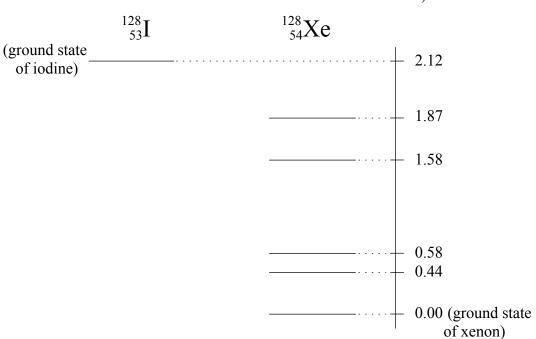
- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or on blank pages will not be marked.
- Show all your working.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The maximum mark for this paper is 40.
- Two of these marks will be awarded for using good English, organising information clearly and using specialist vocabulary where appropriate.
- The marks for questions are shown in brackets.
- A Data Sheet is provided as a loose insert to this question paper.
- You are expected to use a calculator where appropriate.
- Questions 1(a)(iii) and 4(b)(ii) should be answered in continuous prose. In these questions you will be marked on your ability to use good English, to organise information clearly and to use specialist vocabulary where appropriate.

F	or Exam	iner's Us	e
Question	Mark	Question	Mark
1			
2			
3			
4			
5			
Total (Co	olumn 1)	-	
Total (Co	olumn 2) -	-	
Quality o			
TOTAL			
Examine	r's Initials		

PHA5/W


SECTION A: NUCLEAR INSTABILITY

Answer all of this question.

1 (a) Figure 1 represents both the ground state of the nucleus of iodine, $^{128}_{53}$ I, and the five lowest nuclear energy levels for a xenon nucleus, $^{128}_{54}$ Xe.

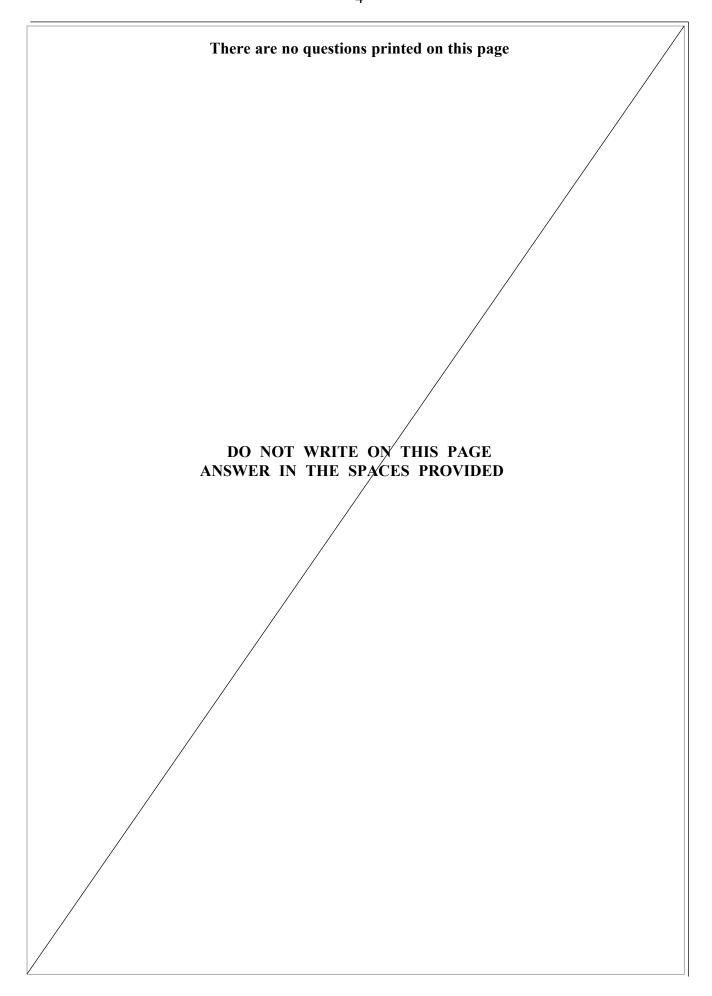
Figure 1

energy (relative to the ground state of xenon)/MeV

The $^{128}_{53}$ I nucleus is a β^- emitter. When an $^{128}_{53}$ I nucleus in its ground state decays into $^{128}_{54}$ Xe by β^- decay, the xenon nucleus will be formed in one of the five levels shown.

1	(a)	(i)	State the energy of the most energetic β^- particle emitted from a nucleus of	$^{128}_{53}I$
			in its ground state.	

1 (a) (ii) Calculate the energy of the least energetic gamma ray that may follow the β^- decay of a $^{128}_{53}$ I nucleus.



1	(a)	(iii)	Explain why the emission of gamma rays of discrete frequencies may follow the β^- decay of $^{128}_{53}$ I nuclei. You may be awarded additional marks to those shown in brackets for the quality of written communication in your answer.
			(6 marks)
1	(b)	high	lear radii can be determined by observing the scattering of electrons accelerated to energy. Give one advantage of using electrons for this determination and state the electrons must be of high energy.
			(2 marks)
1	(c)	Give lead	en that the radius of the $^{120}_{50}$ Sn nucleus is 5.99×10^{-15} m, calculate the radius of the $^{208}_{82}$ Pb nucleus.
		•••••	
		•••••	(2 marks)

Turn over ▶

10

SECTION B: ASTROPHYSICS

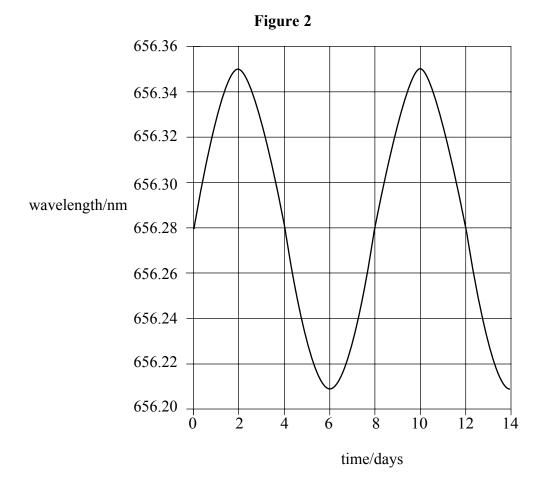
			Answer all questions.
2	(a)		v a ray diagram to show the path of two rays, initially parallel to the axis, through ssegrain telescope, as far as the eyepiece.
			(3 marks)
2	(b)		Bradford Robotic Telescope in Tenerife is a Cassegrain arrangement with an etive of diameter 356 mm.
2	(b)	(i)	Calculate the resolving power of this telescope when used with light of wavelength 570 nm.
2	(b)	(ii)	The images are collected using a charge coupled device (CCD). What feature of the structure of a CCD can affect the resolution of the final image obtained?
			Question 2 continues on the next page

Turn over ▶

6

?	(b)	(iii)		efficiency of a CCD is to the description of a CCD is to the d		70%.
						(3 mari
3	The p	prope	rties of some of	the stars in Ursa Major	r are given in the tabl	e.
		n	ame	apparent magnitude	distance /light year	spectral class
		Г	Oubhe	1.8	124	K
		N	1erak	2.4	79	A
			legrez	3.3	81	A
			1izar	2.1	78	A
		A	lkaid	1.9	101	В
3	(a)	(ii)	Which star is	the hottest? Explain yo	uir ancwer	
,	(a)	(11)			ur answer.	
						(2 mari
3	(b)	(i)	Define absolu	te magnitude.		
3	(b)	(ii)	Which star ha	s the brightest absolute	magnitude? Explain	your answer.
						(2 mar)

9


3	(c)	(i)	Define the parsec.
3	(c)	(ii)	Calculate the distance to Alkaid in parsecs.
3	(c)	(iii)	Calculate the absolute magnitude of Alkaid.
			(5 marks)

Turn over for the next question

Turn over ▶

4 Eta Orionis is an eclipsing binary system. Analysis of the light from one of the stars shows that a particular spectral line varies in wavelength as shown in **Figure 2**.

4	(a)	(i)	Show that the star has an orbital velocity of approximately $30 \mathrm{km s}^{-1}$.
4	(a)	(ii)	Calculate the diameter of the orbit of the star.
			(4 marks)

4 (b) The graph of apparent magnitude against time (light curve) for this binary system is shown in **Figure 3**.

Figure 3

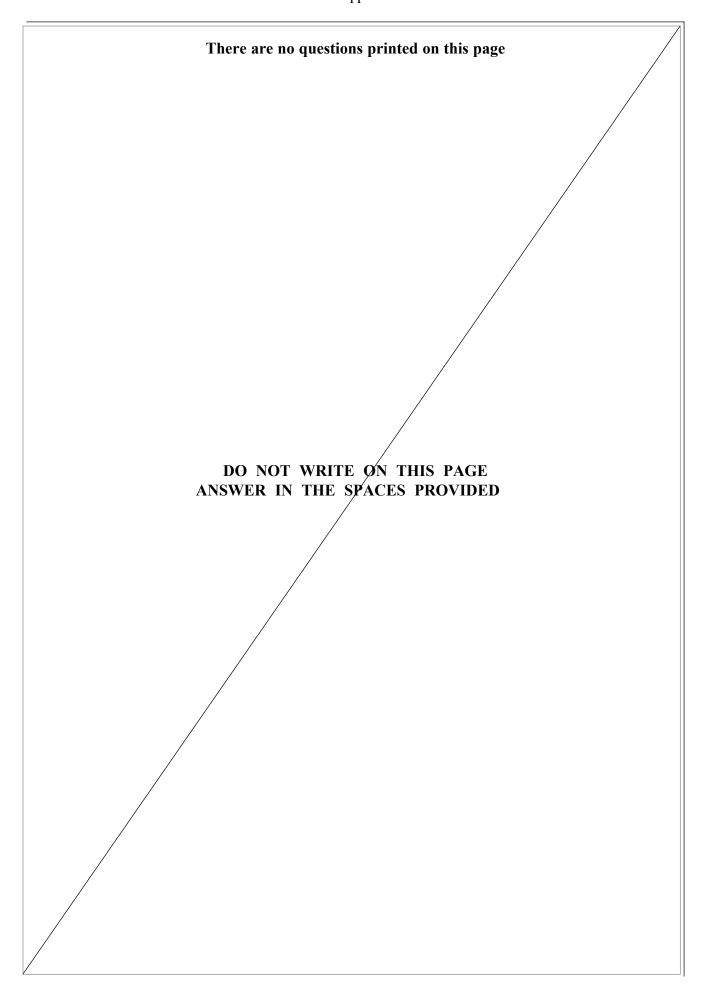
3.25 3.30 3.35 3.40 3.45 3.50 3.55 3.60 3.65

- 4 (b) (i) Label the time axis with a suitable scale.
- 4 (b) (ii) Explain, in terms of the movement of the two stars, how this light curve is produced.

 You may be awarded additional marks to those shown in brackets for the quality

of written communication in your answer.

(4 marks)


8

Turn over >

(a)	mass	The Westerlund 1 star cluster contains a <i>neutron star</i> whose mass is forty times the mass of the Sun. Before its discovery, many astronomers believed that a star remnant of this size would be more likely to form a <i>black hole</i> .						
	Expl	ain what is meant by						
(a)	(i)	a neutron star,						
(a)	(ii)	a black hole.						
		(3 marks)						
(b)								
		(2 marks)						
		Quality of Written Communication (2 marks)						
		END OF QUESTIONS						
	(a) (a)	mass of the Expl (a) (i) (a) (ii)	mass of the Sun. Before its discovery, many astronomers believed that a star remnant of this size would be more likely to form a black hole. Explain what is meant by (a) (i) a neutron star, (3 marks) (b) Calculate the Schwarzschild radius of a black hole whose mass is forty times the mass of the Sun. (2 marks) Quality of Written Communication (2 marks)					

