"Full Coverage": Circle Theorems

This worksheet is designed to cover one question of each type seen in past papers, for each GCSE Higher Tier topic. This worksheet was automatically generated by the DrFrostMaths Homework Platform: students can practice this set of questions interactively by going to www.drfrostmaths.com/homework, logging on, Practise \rightarrow Past Papers/Worksheets (or Library \rightarrow Past/Past Papers for teachers), and using the 'Revision' tab.

Question 1

Categorisation: Use the circle theorem "Angle at centre is twice angle at circumference."
[Edexcel IGCSE Nov2009-4H Q15ai] A, B, C and D are points on a circle, centre O. Angle $A B C=58^{\circ}$
Calculate the size of angle AOC.

Diagram NOT accurately drawn

Question 2

Categorisation: Use this circle theorem combined with other basic angle properties, e.g. angles around a point add to 360°.
[Edexcel IGCSE Jan2017(R)-4H Q17a]
A, B, and C are points on the circumference of a circle, centre O.
$D A E$ is a tangent to the circle.
Work out the size of angle ACB.

Question 3

Categorisation: Be able to recite circle theorems.

[Edexcel IGCSE Jan2017-3H Q12bii Edited]
A, B, C and D are points on a circle with centre O. Angle $A B C=48^{\circ}$
Give a reason why angle $A D C=132^{\circ}$.

Diagram NOT accurately drawn

Question 4

Categorisation: Use the circle theorem "Opposite angles of a cyclic quadriteral add to 180°."
[Edexcel IGCSE June2011-3H Q16b]

Diagram NOT
accurately drawn
A, B, C and D are points on a circle, centre O. Angle $A D B=57^{\circ}$. Angle $B C D=106^{\circ}$ Calculate the size of angle BAD.

Question 5

Categorisation: Use the circle theorems "Angle between radius and tangent is 90° ". [Edexcel GCSE June2012-1H Q21 Edited]

Diagram NOT
accurately drawn
B, C and D are points on the circumference of a circle, centre $O . A B$ and $A D$ are tangents to the circle. Angle $D A B=50^{\circ}$
Work out the size of angle BCD.
angle $B C D=$ \qquad .

Question 6

Categorisation: Recognise that the radius of a circle is of fixed length for a given circle.
[Edexcel GCSE March2012-3H Q19b Edited]
A, B, C and D are points on a circle, centre O. $B C=C D$. Angle $B C D=130^{\circ}$
Work out the size of angle ODC.

Diagram NOT accurately drawn
\qquad

Question 7

Categorisation: Use the circle theorem "Angles in the same segment are equal."
[Edexcel IGCSE Jan2012-3H Q13bi]
P, Q, R and S are points on the circumference of a circle.
$P R$ and QS intersect at T. Angle QPR $=34^{\circ}$ and angle PRS $=41^{\circ}$

Find the size of angle PTS.

Diagram NOT accurately drawn

Question 8

Categorisation: Use the circle theorem "Angle in a semicircle is $\mathbf{9 0}^{\circ}$."
[Edexcel IGCSE May2014-4H Q16b]

G, H, J and K are points on a circle. $K J$ is a diameter of the circle. Angle $K G H=124^{\circ}$ Work out the size of angle HKJ.

Question 9

Categorisation: Recognise that the "angle at centre is double angle at circumference" theorem still applies when the lines overlap.
[Edexcel GCSE June2009-3H Q18bii Edited]

The diagram shows a circle centre 0 . A, B and C are points on the circumference. $D C O$ is a straight line. $D A$ is a tangent to the circle. Angle $A D O=36^{\circ}$ and angle $A O D=$ 54°.
Determine angle $A B C$.

Question 10

Categorisation: Use or recite the circle theorem "Tangents to a circle from a point are equal in length."
[Edexcel IGCSE May2013-4H Q19aii Edited]
The sides of triangle $P Q R$ are tangents to a circle.
The tangents touch the circle at the points S, T and U.
$Q S=6 \mathrm{~cm} . P S=7 \mathrm{~cm}$.
Give a reason why $Q T=6 \mathrm{~cm}$.

Diagram NOT accurately drawn

Question 11

Categorisation: Use the "Alternate Segment Theorem".

[Edexcel GCSE June2003-3I Q25ii,
June2003-5H Q12ii]
In the diagram, A, B and C are points on the circle, centre O .
Angle BCE $=63^{\circ}$
FE is a tangent to the circle at point C .
Calculate the size of angle BAC.
Give reasons for your answer.

Diagram NOT accurately drawn

Question 12

Categorisation: Use circle theorems to form an equation and hence determine the value of a variable.
[Edexcel IGCSE May2012-3H Q18 Edited]

A, B, C and D are points on a circle, centre O. AOBE and DCE are straight lines.
$C O=C E$. Angle $A O D=69^{\circ} \quad$ Angle $C E O=x$
Calculate the value of x.

Question 13

Categorisation: Use a mixture of circle theorems.

[Edexcel IGCSE June2010-3H Q13 Edited]

Diagram NOT accurately drawn
P, Q, R and S are points on a circle, centre C. $P C R$ is a straight line.
Angle $P R S=36^{\circ}$
Calculate the size of angle $R Q S$.
angle $R Q S=$ \qquad

Question 14

Categorisation: Use a mixture of circle theorems.
[Edexcel IGCSE Jan2017(R)-4H Q17b]
A, B, and C are points on the circumference of a circle, centre O.
$D A E$ is a tangent to the circle.
Work out the size of angle CAD.

Question 15

Categorisation: Add lines to the diagram (typically the radius of the circle) to enable circle theorems to be used.
[Edexcel IGCSE Nov-2010-4H Q10]

A, B and C are points on a circle, centre $O . A B$ is a diameter of the circle.
$P C$ is a tangent to the circle. $A B P$ is a straight line. Angle $B A C=21^{\circ}$
Work out the size of angle APC.

Question 16

Categorisation: Use a mixture of circle theorems.

[Edexcel IGCSE May2014(R)-4H Q18b]

Find the size of angle CGF.

Question 17

Categorisation: Use a mixture of circle theorems.

[Edexcel IGCSE Jan2016-3H Q17b]
Q, R, S and T are points on a circle. $A T B$ is the tangent to the circle at T
Angle $S T R=26^{\circ} \quad$ Angle $R Q T=73^{\circ}$
Work out the size of angle STA

$\angle S T A=$ \qquad

Question 18

Categorisation: Use a mixture of circle theorems.
[Edexcel GCSE Nov2014-2H Q17]
A, B, C and D are points on the circumference of a circle, centre $O . A C$ is a diameter of the circle. $A C$ and $B D$ intersect at E.

Angle $C A B=25^{\circ} \quad$ Angle $D E C=100^{\circ}$
Work out the size of angle DAC. You must show all your working.

Diagram NOT
accurately drawn
\qquad。

Question 19

Categorisation: Use a mixture of circle theorems.

[Edexcel GCSE(9-1) Mock Set 1 Autumn 2016-1H Q17]
A, B and D are points on the circumference of a circle centre O.
$E D C$ is a tangent to the circle. Angle $B D C=57^{\circ}$. Find the size of angle $A O B$.

You must give a reason for each stage of your working.

\qquad。

Question 20

Categorisation: Give an algebraic expression for an angle.

[Edexcel GCSE Nov2013-1H Q22]
A, B, C and D are points on the circumference of a circle, centre O. Angle $A O C=y$.
Find the size of angle $A B C$ in terms of y. Give a reason for each stage of your working.

Diagram NOT accurately drawn

Angle $A B C=$ \qquad

Question 21

Categorisation: Construct extra lines based on given instructions.

[Edexcel IGCSE Jan2015(R)-4H Q16b]
A, B, C and D are points on a circle. $A B$ is a diameter of the circle.
$D C$ is parallel to $A B$. Angle $B A D=70^{\circ}$
The tangent to the circle at D meets the line $B C$ extended at T.

Calculate the size of angle BTD.

Diagram NOT accurately drawn

Question 22
Categorisation: Determine the area of a segment, making use of circle theorems.
[Edexcel IGCSE Jan2012-3H Q18]

Diagram NOT accurately drawn

AOD is a diameter of a circle, with centre O and radius 9 cm .

ABC is an arc of the circle. $A C$ is a chord. Angle ADC = 35°

Calculate the area of the shaded segment.
Give your answer correct to 3 significant figures.

Question 23

Categorisation: Prove the congruency of two triangles using circle theorems.

[Edexcel GCSE Nov2013-2H Q28 Edited]

Diagram NOT accurately drawn
$A O C$ and $B O D$ are diameters of a circle, centre O.
Prove that triangle $A B D$ and triangle $D C A$ are congruent.

Question 24

Categorisation: Prove the circle theorems.
Prove that the angle at the centre of a circle is twice that angle at the circumference. You may not refer to other circle theorems.

Question 25

Categorisation: Prove the circle theorems.

Prove that opposite angles of a cyclic quadrilateral add to 180°.

Question 26

Categorisation: Prove the circle theorems.
Prove the Alternate Segment Theorem. You may find the diagram below helpful, proving that angle $C B A=$ angle $C E B$.

Question 27

Categorisation: Prove the circle theorems.
Prove that angles in a semicircle are equal to 90°.

Answers

Question 1

116

Question 2

50°

Question 3

Opposite angles of cyclic quadrilateral add to 180°. Angle at centre is twice angle at circumference.

Question 4

$74{ }^{\circ}$

Question 5

angle $B C D=65^{\circ}$

Question 6

Angle ODC $=65^{\circ}$
Question 7
75°

Question 8
$34{ }^{\circ}$

Question 9

27°
Question 10
Tangents from a point to a circle are equal in length

Question 11

"63" and "Alternate
Segment Theorem" (other alternatives possible)

Question 12
23°
Question 13
angle $R Q S=54$
Question 14
$70{ }^{\circ}$

Question 15

48°

Question 16

83

Question 17

$\angle S T A=47^{\circ}$

Question 18

35°
Question 19
$\angle A O B=66^{\circ}$

Question 20

Angle $A B C=180-\frac{y}{2}$
Question 21
60°

Question 22

$11.4 \mathrm{~cm}^{2}$

Question 23

Any of SAS, ASA and RHS possible, using an appropriate combination of three of the following:
"AD is common",
"Angle BAD = angle CDA (angles in a semicircle are 90°)"
"Angle ABD = angle DCA (angles in the
same segment are equal)"
"Angle OAD = angle ODA (base angles of
isosceles triangle are equal"
"AC = BD (both are diameters)"

The proof should finish with a statement of which congruency proof was used, e.g.
"Therefore ABD and DCA are congruent by SAS".

Question 24

(Draw a line from A to O)
Let $\angle B A O=x$ and $\angle O A C=y$.
$\angle A B O=x$ and $\angle A C O=y$ (base angles of an isosceles triangle are equal)
$\angle A O B=180-2 x$ and
$\angle A O C=180-2 y$ (angles in a triangle sum to 180°)
Thus $\angle B O C=360-(180-2 x)-(180-2 y)=2 x+2 y=2(x+y)=2 \times \angle B A C$

Question 25

Consider the diagram. $\angle O B C=c, \angle O D C=d, \angle A D O=b$ and $\angle A B O=a$ (base angles of isosceles triangles are equal).
Then considering angles in quadrilateral $A B C D$:

$$
\begin{aligned}
& a+b+b+d+d+c+c+a=360^{\circ} \\
& 2 a+2 b+2 c+2 d=360^{\circ} \\
& (a+b)+(c+d)=180^{\circ}
\end{aligned}
$$

Therefore $\angle B A D+\angle B C D=180^{\circ}$

Question 26

Let angle $C B A=x . \angle D B C=90-x$ (angle between radius and tangent is 90°). $\angle D C B=90^{\circ}$ (angle in semicircle is 90°). Therefore $\angle B D C=180-90-(90-x)=x$. $\angle B E C=x$ (angles in same segment are equal). Thus $\angle C B A=\angle B E C$.

Question 27

Let $\angle B C O=x$. Then $\angle O B C=x$ (base angles of isosceles triangle are equal).
$\angle B O C=180-2 x$ (angles in triangle sum to 180°) therefore $\angle A O B=2 x$ (angles on straight line add to 180°). $\angle B A O=\angle A B O=\frac{180-2 x}{2}=90-x$ (base angles of isosceles triangle are equal).
$\angle A B C=\angle A B O+\angle O B C=(90-x)+x=90^{\circ}$ therefore angle in semicircle is 90°.

