General Certificate of Education (A-level) June 2011

Physics A
PHYA5/2A
(Specification 2450)
Unit 5/2A: Astrophysics

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Instructions to Examiners

1 Give due credit for alternative treatments which are correct. Give marks for what is correct in accordance with the mark scheme; do not deduct marks because the attempt falls short of some ideal answer. Where marks are to be deducted for particular errors, specific instructions are given in the marking scheme.

Do not deduct marks for poor written communication. Refer the scripts to the Awards meeting if poor presentation forbids a proper assessment. In each paper, candidates are assessed on their quality of written communication (QWC) in designated questions (or part-questions) that require explanations or descriptions. The criteria for the award of marks on each such question are set out in the mark scheme in three bands in the following format. The descriptor for each band sets out the expected level of the quality of written communication of physics for each band. Such quality covers the scope (eg relevance, correctness), sequence and presentation of the answer. Amplification of the level of physics expected in a good answer is set out in the last row of the table. To arrive at the mark for a candidate, their work should first be assessed holistically (ie in terms of scope, sequence and presentation) to determine which band is appropriate then in terms of the degree to which the candidate's work meets the expected level for the band.

QWC	descriptor	mark range
Good - Excellent	see specific mark scheme	$\mathbf{5 - 6}$
Modest - Adequate	see specific mark scheme	$3-4$
Poor - Limited	see specific mark scheme	$\mathbf{1 - 2}$
The description and/or explanation expected in a good answer should include a		
coherent account of the following points:		
see specific mark scheme		

Answers given as bullet points should be considered in the above terms. Such answers without an 'overview' paragraph in the answer would be unlikely to score in the top band.

3 An arithmetical error in an answer will cause the candidate to lose one mark and should be annotated AE if possible. The candidate's incorrect value should be carried through all subsequent calculations for the question and, if there are no subsequent errors, the candidate can score all remaining marks.

4 The use of significant figures is tested once on each paper in a designated question or partquestion. The numerical answer on the designated question should be given to the same number of significant figures as there are in the data given in the question or to one more than this number. All other numerical answers should not be considered in terms of significant figures.

Numerical answers presented in non-standard form are undesirable but should not be penalised. Arithmetical errors by candidates resulting from use of non-standard form in a candidate's working should be penalised as in point 3 above. Incorrect numerical prefixes and the use of a given diameter in a geometrical formula as the radius should be treated as arithmetical errors.

6 Knowledge of units is tested on designated questions or parts of questions in each a paper. On each such question or part-question, unless otherwise stated in the mark scheme, the mark scheme will show a mark to be awarded for the numerical value of the answer and a further mark for the correct unit. No penalties are imposed for incorrect or omitted units at intermediate stages in a calculation or at the final stage of a non-designated 'unit' question.
$7 \quad$ All other procedures including recording of marks and dealing with missing parts of answers will be clarified in the standardising procedures.

GCE Physics, Specification A, PHYA5/1, Nuclear and Thermal Physics

Question 2		
a	${ }_{13}^{27} \mathrm{Al}+\alpha \rightarrow{ }_{15}^{30} \mathrm{P}+{ }_{(0)}^{(1)} \mathrm{n} \checkmark$	$\mathbf{1}$
b	kinetic energy lost by the potential energy gain \checkmark $2.18 \times 10^{-12}=\frac{1}{4 \pi \times 8.85 \times 10^{-12}} \times \frac{13 \times 1.6 \times 10^{-19} \times 2 \times 1.6 \times 10^{-19}}{r} \checkmark$ $r=2.75 \times 10^{-15}(\mathrm{~m}) \checkmark$	$\mathbf{3}$
		Total

Question 3		
a	binding etergy per mocleon. peak 8.7 (accept $8.0-9.2$) in MeV (or peak 1.4×10^{-12} accept $1.3-1.5 \times 10^{-12} \checkmark$ in $J \checkmark$) at nucleon number $50-60 \checkmark$ accept $50-75$ sharp rise from origin and moderate fall not below $2 / 3$ of peak height	4
b	energy is released/made available when binding energy per nucleon is increased \checkmark in fission a (large) nucleus splits and in fusion (small) nuclei join \checkmark the most stable nuclei are at a peak \checkmark fusion occurs to the left of peak and fission to the right \checkmark	$\max 3$
	Total	7

Question 4		$\mathbf{2}$
a	$($ use of $\Delta Q=m c \Delta T)$ $30 \times 98=0.100 \times c \times 14 \checkmark$ $c=2100\left(\mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right) \checkmark$	$\mathbf{3}$
b	$($ use of $\Delta Q=m /+m c \Delta T)$ $500 \times 98=0.100 \times 3.3 \times 10^{5} \checkmark+0.100 \times 4200 \times \Delta T \checkmark$ $\left(\Delta T=38^{\circ} \mathrm{C}\right)$ $T=38^{\circ} \mathrm{C} \checkmark$	$\mathbf{2}$
cthe temperature would be higher \checkmark as the ice/water spends more time below $25^{\circ} \mathrm{C}$ or heat travels in the direction from hot to cold or ice/water first gains heat then loses heat any one line \checkmark	Total	$\mathbf{7}$

Question 5		
a	graph passes through given point $2.2 \times 10^{-3} \mathrm{~m}^{3}$ at $0^{\circ} \mathrm{C}$ straight line with positive gradient (straight) line to aim or pass through $-273^{\circ} \mathrm{C}$ at zero volume	2
b	$\begin{aligned} & \text { (use of } n=P \text { VIR } T \text {) } \\ & 1.00 \times 10^{5} \times 2.20 \times 10^{-3} / 8.31 \times 273 \\ & n=0.0970 \text { (moles) } \end{aligned}$	2
C	$\begin{aligned} & \text { (use of mean kinetic energy }=3 / 2 \mathrm{~K} \mathrm{~T} \text {) } \\ & =3 / 2 \times 1.38 \times 10^{-23} \times 323 \\ & 6.69 \times 10^{-21}(\mathrm{~J}) \checkmark 3 \mathrm{sfs} \checkmark \end{aligned}$	3
d	total internal energy $=6.69 \times 10^{-21} \times 0.0970 \times 6.02 \times 10^{23}=390(\mathrm{~J}) \checkmark$	1
e	The candidate's writing should be legible and the spelling, punctuation and grammar should be sufficiently accurate for the meaning to be clear. The candidate's answer will be assessed holistically. The answer will be assigned to one of three levels according to the following criteria. High Level (Good to excellent): 5 or 6 marks The information conveyed by the answer is clearly organised, logical and coherent, using appropriate specialist vocabulary correctly. The form and style of writing is appropriate to answer the question. The candidate provides a comprehensive and coherent sequence of ideas linking the motion of molecules to the pressure they exert on a container. At least three of the first four points listed below must be given in a logical order. The description should also show awareness of how a balance is maintained between the increase in speed and shortening of the time interval between collisions with the wall to maintain a constant pressure. To be in this band, reference must be made to force being the rate of change of momentum or how, in detail, the volume compensates for the increase in temperature. Intermediate Level (Modest to adequate): $\mathbf{3}$ or $\mathbf{4}$ marks The information conveyed by the answer may be less well organised and not fully coherent. There is less use of specialist vocabulary, or specialist vocabulary may be used incorrectly. The form and style of writing is less appropriate. The candidate provides a comprehensive list of ideas linking the motion of molecules to the pressure they exert on a container. At least three of the first four points listed below are given. The candidate also knows than the mean square speed of molecules is proportional to temperature. Using this knowledge, an attempt is made to explain how the pressure is constant.	max 6

	Low Level (Poor to limited): $\mathbf{1}$ or $\mathbf{2}$ marks The information conveyed by the answer is poorly organised and may not be relevant or coherent. There is little correct use of specialist vocabulary. The form and style of writing may be only partly appropriate.	
	The candidate attempts the question and refers to at least two of the points listed below. Incorrect, inappropriate of no response: $\mathbf{0}$ marks	
No answer or answer refers to unrelated, incorrect or inappropriate physics. Statements expected in a competent answer should include some of the following marking points. molecules are in rapid random motion/many molecules are involved molecules change their momentum or accelerate on collision with the walls reference to Newton's $2^{\text {nd }}$ law either $F=$ ma or $F=$ rate of change of momentum reference to Newton's $3^{\text {rd }}$ law between molecule and wall relate pressure to force $P=F / A$ mean square speed of molecules is proportional to temperature as temperature increases so does change of momentum or change in velocity compensated for by longer time between collisions as the temperature increases as the volume increases the surface area increases which reduces the pressure	$\mathbf{1 4}$	

GCE Physics, Specification A, PHYA5/2A, Astrophysics

Question 1		
a	mirrors correct - concave primary and convex secondary both rays correct to eyepiece	2
b i	diagram to show two pairs of parallel rays being brought to a focus, those further from the axis being focused closer to the mirror \checkmark	1
b ii	$\begin{aligned} \text { (use of } & \theta=/ \lambda / D) \\ \text { to give } & \theta=630 \times 10^{-9} / 0.15=4.2 \times 10^{-6} \checkmark \\ & \operatorname{rad} \checkmark \end{aligned}$	2
b iii	use of $s=r \theta$ to give $\quad \theta=4.8 \times 10^{3} / 1.4 \times 10^{9}=3.43 \times 10^{-6}(\mathrm{rad})$ claim unlikely to be valid as this angle is smaller than the minimum angular separation calculated in ii \checkmark	2
	Total	7

Question 2		
a	 main sequence curvature correct \checkmark giants and (white) dwarfs correct \checkmark absolute magnitude scale correct (from 15 to -10)	3
b i	$\begin{array}{ll} \hline \text { use of } & \lambda_{\max } \mathrm{T}=0.0029 \checkmark \\ \text { gives } & \mathrm{T}=0.0029 / 3.4 \times 10^{-7} \checkmark \\ & =8.5 \times 10^{3}(\mathrm{~K}) \checkmark \end{array}$	3
b ii	$\begin{array}{ll} \text { use of } & P_{D} / P_{S}=\sigma A_{D} T_{D}{ }^{4} /\left(\sigma A_{S} T_{S}{ }^{4}\right) \\ \text { gives } & A_{D} / A_{S}=P_{D} T_{S}{ }^{4} /\left(P_{S} T_{D}{ }^{4}\right) \\ & =70000(5700 / 8500)^{4} \\ & =1.42 \times 10^{4} \checkmark \\ \text { so } & r_{D} / r_{S}=\sqrt{ }\left(1.48 \times 10^{4}\right)=119 \checkmark \\ \text { gives } & r_{D}=119 \times 6.96 \times 10^{8}=8.28 \times 10^{10}(\mathrm{~m}) \checkmark \end{array}$	3

c	The candidate's writing should be legible and the spelling, punctuation and grammar should be sufficiently accurate for the meaning to be clear. The candidate's answer will be assessed holistically. The answer will be assigned to one of three levels according to the following criteria. High Level (Good to excellent): 5 or $\mathbf{6}$ marks The information conveyed by the answer is clearly organised, logical and coherent, using appropriate specialist vocabulary correctly. The form and style of writing is appropriate to answer the question. The candidate states that the atmosphere of the star contains hydrogen with electrons in the $\mathrm{n}=2$ state and includes a clear description of the absorption process in the atmosphere of the star, with reference to energy jumps corresponding to specific frequencies of light. They describe at least one reason for the gap in the spectrum in terms of the de-excitation process. Intermediate Level (Modest to adequate): $\mathbf{3}$ or $\mathbf{4}$ marks The information conveyed by the answer may be less well organised and not fully coherent. There is less use of specialist vocabulary, or specialist vocabulary may be used incorrectly. The form and style of writing is less appropriate. The candidate may not state that electrons start in the $\mathrm{n}=2$ state. Only one of the processes, excitation or de-excitation, is satisfactorily described. There should be some link between energy and frequency but they may not make a clear reference to $\mathrm{E}=\mathrm{hf}$. Low Level (Poor to limited): $\mathbf{1}$ or $\mathbf{2}$ marks The information conveyed by the answer is poorly organised and may not be relevant or coherent. There is little correct use of specialist vocabulary. The form and style of writing may be only partly appropriate. The candidate recognises that changes in electron energy levels are involved. They may confuse absorption for emission and their explanation of why the frequency of the light is important may be vague. They may also be confusion between absorption due to the star's atmosphere and the Earth's atmosphere. Incorrect, inappropriate of no response: 0 marks No answer or answer refers to unrelated, incorrect or inappropriate physics.	$\max 6$

	Statements expected in a competent answer should include some of the following marking points. - the atmosphere of the star has hydrogen atoms with electrons in the $\mathrm{n}=2$ state - light from the star passes through the atmosphere of the star - electrons (in the $\mathrm{n}=2$) are excited into higher energy states - they can only absorb certain amounts of energy - these certain energies are related to specific frequencies (E=hf) - the electrons then de-excite - the electrons may de-excite through different energy level changes - when the electrons de-excite the light is radiated in all directions - this means that the intensity of the light at particular frequencies is reduced, resulting in absorption lines	
	Total	15

Question 3		
a i	increase in wavelength (of em radiation) due to relative recessive velocity between observer and source \checkmark	1
a ii	$\begin{array}{ll} \text { use of } & v=H d \\ \text { to give } & v=65 \times 25 \checkmark \\ & =1.6 \times 10^{3}\left(\mathrm{~km} \mathrm{~s}^{-1}\right) \checkmark \end{array}$	2
b i	all type 1a supernovae have same peak absolute magnitude apparent magnitude can be measured ref to $m-M \log (d / 10)$ or inverse square law	$\max 2$
b ii	$\begin{array}{ll} \text { use of } & m-M=5 \log (d / 10) \\ \text { gives } & 12.9-(-19.3)=5 \log (d / 10) \checkmark \\ & \log (d / 10)=6.44 \\ & d=27.5(\mathrm{Mpc}) \checkmark \end{array}$	2
c	to make the accepted value for the distance more reliable \checkmark	1
	Total	8

Question 4		
a	boundary where the escape velocity $=\mathrm{c} \checkmark$	1
b i	$\begin{array}{ll} \text { use of } & R s=2 \mathrm{GM} / \mathrm{c}^{2} \\ \text { to give } & R s=2 \times 6.67 \times 10^{-11} \times 60 \times 10^{6} \times 1.99 \times 10^{30} /\left(3 \times 10^{8}\right)^{2} \\ & =1.8 \times 10^{11} \mathrm{~m} \checkmark \end{array}$	2
b ii	$\begin{aligned} \text { use of } & D=M / V \\ \text { to give } & D=60 \times 10^{6} \times 2 \times 10^{30} /\left(4 / 3 \pi\left(1.78 \times 10^{11}\right)^{3}\right) \checkmark \\ & =5.1 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3} \checkmark \end{aligned}$	2
	Total	5

	UMS conversion calculator www.aqa.org.uk/umsconversion	

