

General Certificate of Education Advanced Subsidiary Examination June 2009

Physics A

PHYA1

Unit 1 Particles, Quantum Phenomena and Electricity

Data and Formulae Booklet

DATA FUNDAMENTAL CONSTANTS AND V	ALUES		
Quantity .	Symbol	Value	• Units
speed of light in vacuo	С	3.00×10^{8}	${ m m~s}^{-1}$
permeability of free space	$\mu_{ m o}$	$4\pi imes 10^{-7}$	$H m^{-1}$
permittivity of free space	\mathcal{E}_{0}	8.85×10^{-12}	$F m^{-1}$
charge of electron	е	-1.60×10^{-19}	С
the Planck constant	h	6.63×10^{-34}	Js
gravitational constant	G	6.67×10^{-11}	$N m^2 kg^{-2}$
the Avogadro constant	N_{A}	6.02×10^{23}	mol^{-1}
molar gas constant	R	8.31	J K ⁻¹ mol ⁻¹
the Boltzmann constant	k	1.38×10^{-23}	$J K^{-1}$
the Stefan constant	σ	5.67×10^{-8}	$W m^{-2} K^{-4}$
the Wien constant	α	2.90×10^{-3}	m K
electron rest mass (equivalent to 5.5×10^{-4} u)	m _e	9.11×10^{-31}	kg
electron charge/mass ratio	<i>e/m</i> _e	1.76×10^{11}	$\rm C~kg^{-1}$
proton rest mass (equivalent to 1.00728 u)	$m_{ m p}$	$1.67(3) \times 10^{-27}$	kg
proton charge/mass ratio	$e/m_{\rm p}$	9.58×10^{7}	$\rm C~kg^{-1}$
neutron rest mass (equivalent to 1.00867 u)	m _n	$1.67(5) \times 10^{-27}$	kg
gravitational field strength	g	9.81	$\rm N~kg^{-1}$
acceleration due to gravity	g	9.81	$m s^{-2}$
atomic mass unit (1u is equivalent to 931.3 MeV)	u	1.661×10^{-27}	kg

ASTRONOMICAL DATA

Body	Mass/kg	Mean radius/m
Sun	1.99×10^{30}	6.96×10^{8}
Earth	5.98×10^{24}	6.37×10^{6}

GEOMETRICAL EQUATIONS		
arc length	$= r\theta$	
circumference of circle	$= 2\pi r$	
area of circle	$=\pi r^2$	
surface area of cylinder	$= 2\pi rh$	
volume of cylinder	$=\pi r^2 h$	
area of sphere	$=4\pi r^2$	
volume of sphere	$=\frac{4}{3}\pi r^3$	

This insert page should **not** be sent to the examiner INSERT TO M/Jun09/PHYA1

AS FORMULAE

PARTICLE PHYSICS

Rest energy values

class	name	symbol	rest energy /MeV
photon	photon	γ	0
lepton	neutrino	v _e	0
		v_{μ}	0
	electron	v_{μ} e^{\pm}	0.510999
	muon	μ [±]	105.659
mesons	π meson	π^{\pm}	139.576
		π^0	134.972
	K meson	K [±]	493.821
		K ⁰	497.762
baryons	proton	р	938.257
	neutron	n	939.551

Properties of quarks

antiquarks have opposite signs

type	charge	baryon number	strangeness
u	$+\frac{2}{3}e$	$+\frac{1}{3}$	0
d	$-\frac{1}{3}e$	$+\frac{1}{3}$	0
S	$-\frac{1}{3}e$	$+\frac{1}{3}$	-1

Properties of Leptons

	Lepton number
particles: e^{-} , v_e ; μ^{-} , v_{μ}	+1
antiparticles: e^+ , $\overline{v_e}$; μ^+ , $\overline{v_{\mu}}$	-1

Photons and Energy Levels

photon energy	$E = hf = hc / \lambda$
photoelectricity	$hf = \phi + E_{K(max)}$
energy levels	$hf = E_1 - E_2$
de Broglie Wavelength	$\lambda = \frac{h}{p} = \frac{h}{mv}$

ELECTRICITY

 $I = \frac{\Delta Q}{\Delta t} \qquad V = \frac{W}{Q} \qquad R = \frac{V}{I}$ current and pd $\varepsilon = \frac{E}{Q}$ $\varepsilon = I(R+r)$ emf

resistors in series

resistors in parallel

resistivity

power

alternating current

MECHANICS moments

velocity and acceleration

equations of motion

 $v = \frac{\Delta s}{\Delta t}$ $a = \frac{\Delta v}{\Delta t}$ v = u + at $s = \frac{(u+v)}{2}t$ 2as $s = ut + \frac{1}{2}at^2$

work, energy and power

force

$W = F s \cos \theta$ $E_{\rm K} = \frac{1}{2} m v^2$ $\Delta E_P = mg\Delta h$ $P = \frac{\Delta W}{\Delta t}, P = Fv$

 $R = R_1 + R_2 + R_3 + \dots$

 $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$

 $P = VI = I^2 R = \frac{V^2}{R}$

moment = Fd

 $I_{\rm rms} = \frac{I_0}{\sqrt{2}} \qquad \qquad V_{\rm rms} = \frac{V_0}{\sqrt{2}}$

 $\rho = \frac{RA}{I}$

efficiency = <u>useful output power</u> input power

MATERIALS

density $\rho = \frac{m}{V}$ Hooke's law $F = k \Delta L$

tensile stress = $\frac{F}{A}$ tensile stress Young modulus tensile strain tensile strain = $\frac{\Delta L}{L}$

energy
$$E = \frac{1}{2}F\Delta L$$

stored

WAVES

fringe

spacing

wave speed

 $c = f \lambda$ period

diffraction

grating

 $T = \frac{1}{f}$

 $d\sin\theta = n\lambda$

refractive index of a substance s, $n = \frac{c}{c_s}$

 $w = \frac{\lambda D}{\Delta D}$

for two different substances of refractive indices n_1 and n_2 , *law of refraction* $n_1 \sin \theta_1 = n_2 \sin \theta_2$ $\sin \theta_{\rm c} = \frac{n_2}{n_1} \text{ for } n_1 > n_2$ critical angle

$v^2 = u^2 + $
F = ma