TAP 320-2: Phase difference and superposition

This question helps you check your understanding of phase difference and gives you further practice in superposing waves.

Graphs of waves

A graph of wave displacement against position shows a wave 'frozen' in space at an instant of time. Really, the waves are travelling along. The graph shows 'snapshots' of two waves, A and B.

1. What is the phase difference between A and B? Give your answers in fractions of a wavelength and degrees. There are at least two correct answers to this question!
2. Sketch the superposition pattern of A and B.

The next diagram shows two more waves, C and D .

3. What is the phase difference between C and D ?
4. Sketch the superposition pattern of C and D.

5. What phase angle corresponds to a phase difference of $1 / 3$ of a wavelength?
6. Sketch a diagram showing two waves of equal amplitude with a phase difference equal to $1 / 3$ of a wavelength.

Practical advice

A suitable question to support demonstrations of superposition, phase and path difference.

Answers and worked solutions

1. Zero phase difference
2.

3. One oscillation (or wavelength for a displacement amplitude graph) is equivalent to 360°. Therefore:

1/4 wavelength $=1 / 4 \times 360^{\circ}=90^{\circ}$
$3 / 4$ wavelength $=3 / 4 \times 360^{\circ}=270^{\circ}$.
4.

5. $1 / 3 \times 360^{\circ}=120^{\circ}$
6.

External reference

This activity is taken from Advancing Physics chapter 6, 10W

