Surname				Other	Names			
Centre Number					Cand	idate Number		
Candidate Signature		е						

For Examiner's Use

General Certificate of Secondary Education January 2009

ADDITIONAL SCIENCE Unit Physics P2

PHYSICS Unit Physics P2

Higher Tier

Monday 19 January 2009 9.00 am to 9.45 am

For this paper you must have:

• a ruler.

You may use a calculator.

Time allowed: 45 minutes

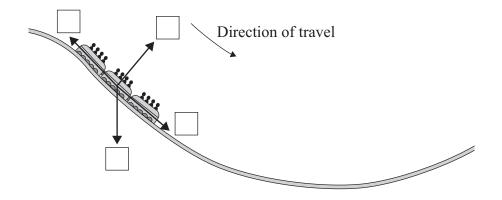
Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or on blank pages will not be marked.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The maximum mark for this paper is 45.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

Advice


• In all calculations, show clearly how you work out your answer.

For Examiner's Use							
Question	Mark	Question	Mark				
1		3					
2		4					
		5					
		6					
7							
Total (Column 1)							
Total (Co	Total (Column 2)						
TOTAL							
Examine	r's Initials						

Answer all questions in the spaces provided.

- The diagram shows the passenger train on part of a rollercoaster ride.
- Which arrow shows the direction of the resultant force acting on the passenger train? Put a tick (\checkmark) in the box next to your choice.

(1 mark)

1	(D)	each have a different kinetic energy.
		Why is the kinetic energy of each passenger different?

(1 mark)

For part of the ride, the maximum gravitational field strength acting on the passengers seems 3 times bigger than normal.

Normal gravitational field strength = 10 N/kg

1 (c) Calculate the maximum gravitational field strength that seems to act on the passengers during the ride.

Maximum gravitational field strength = N/kg

(1 mark)

Use the equation in the box to calculate the maximum weight this passenger
seems to have during the ride.

(c) (ii) One of the passengers has a mass of 80 kg.

1

weight = $mass \times gravitational$ field strength

Snow clearly n	ow you work ou	it your answer.		

Turn over for the next question

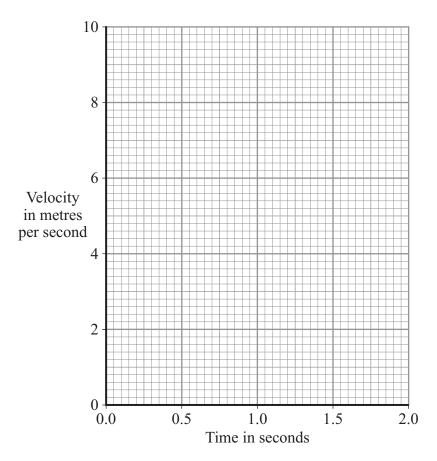
2 (a) The diagram shows an athlete at the start of a race. The race is along a straight track.

In the first 2 seconds, the athlete accelerates constantly and reaches a speed of 9 m/s.

2 (a) (i) Use the equation in the box to calculate the acceleration of the athlete.

acceleration = $\frac{\text{change in velocity}}{\text{time taken for change}}$

		m/s ²		
Draw a ring aro	und your answer			
Which one of the	ne following is th	e unit for accelera	tion?	
				(2 marks)
		Ac	celeration =	
Show clearly ho	ow you work out	your answer.		


(a)

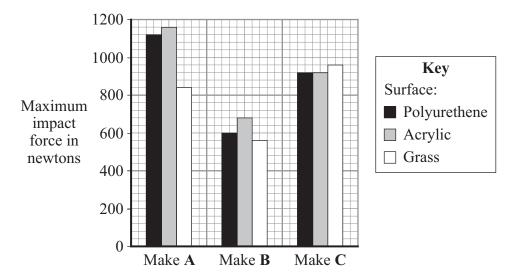
(ii)

(1 mark)


2 (a) (iii) Complete the following sentence.

2 (a) (iv) Complete the graph to show how the velocity of the athlete changes during the first 2 seconds of the race.

(2 marks)


2 (b) Many running shoes have a cushioning system. This reduces the impact force on the athlete as the heel of the running shoe hits the ground.

Question 2 continues on the next page

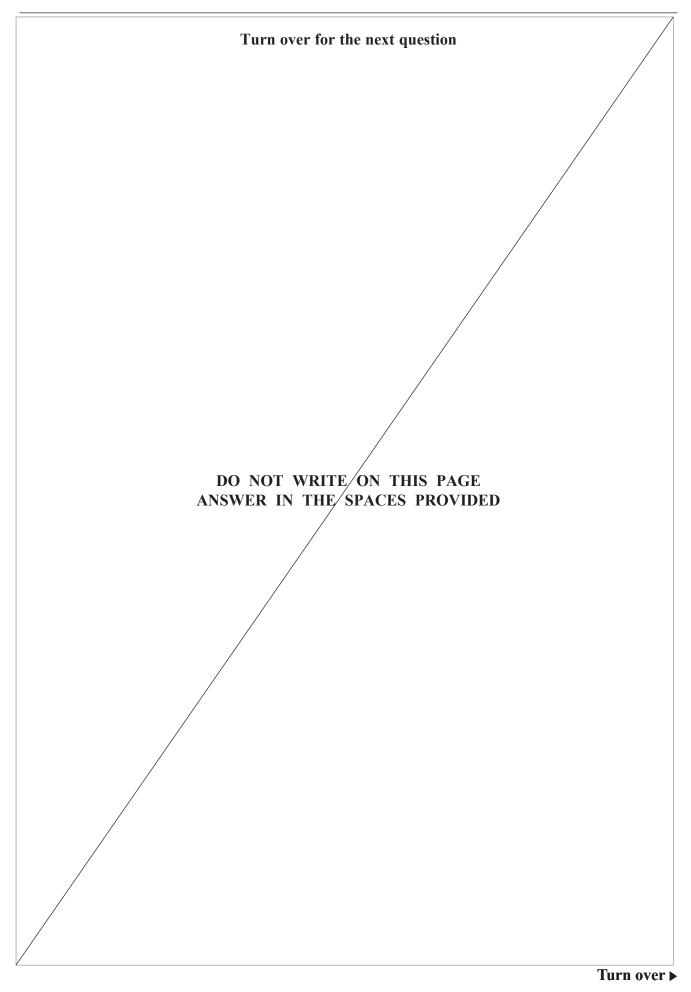
The bar chart shows the maximum impact force for three different makes of running shoe used on three different types of surface.

2 (b) (i) Which **one** of the three makes of running shoe, **A**, **B** or **C**, has the best cushioning system?

Explain the reason for your answer.

(3 marks)

2 (b) (ii) The data needed to draw the bar chart was obtained using a robotic athlete fitted with electronic sensors.


Why is this data likely to be more reliable than data obtained using human athletes?

.....

(1 mark)

10

3			am shows a simple type of car rear window heater. The six heating elements are e same.
			12 V car battery
			Heating element
3	(a)		heating element has a resistance of 5Ω . The current passing through each nent is $0.4\mathrm{A}$.
3	(a)	(i)	Calculate the total resistance of the six heating elements.
			Show clearly how you work out your answer.
			Total resistance = ohms (2 marks)
3	(a)	(ii)	Why is the current passing through each element the same?
			(1 mark)
3	(a)	(iii)	What is the total current passing through the whole circuit?
			(1 mark)
3	(a)	(iv)	How is the 12 volt potential difference of the car battery shared between the six heating elements?
			(1 mark)

3 (b) It takes the heater two minutes to demist the car wind	OW.
--	-----

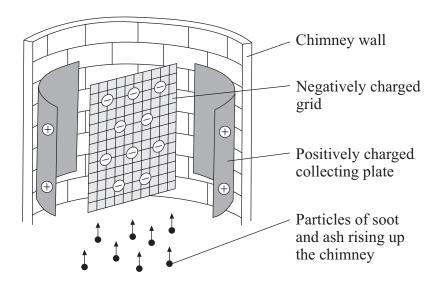
Use the equation in the box to calculate how much charge flows through the heater in this time.

 $charge = current \times time$

Show clearly how you work out your answer and give the unit.

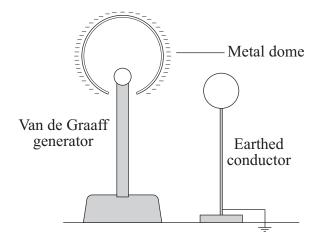
Charge =

(3 marks)


8

Turn over for the next question

4 (a) Burning coal produces soot, ash and waste gases.


The diagram shows an electrostatic precipitator used to separate the particles of soot and ash from the waste gases.

Explain how the electrostatic precipitator separates the particles of soot and ash from the waste gases.

4 (b) The diagram shows a Van de Graaff generator. When the generator is switched on, the metal dome becomes negatively charged.

(2 mar.	ks)

Turn over for the next question

5	(a)	Describe the dif	ference between	an alternating	g current (a.c.) ar	nd a direct curre	ent (d.c.).
							(2 marks)
5	(b)	The diagram she steamer.	ows the informat	tion plate on th	ne bottom of an	electric wallpap	er
			230 V a.c.	50 Hz	2.3 kW		
5	(b)	(i) Use the ed	uation in the bo	x to calculate	the current used	by the steamer	
			power = cur	rent × potentia	al difference		
		Show clea	rly how you wo	rk out your an	swer.		
					Cur	rent	A (2 marks)
5	(b)	(ii) Which on	e of the followin	g fuses should	d be used inside	the plug of the	steamer?
		Draw a rii	ng around your a	nswer.			
		1 A	3 A	5A	10 A	13 A	(1 mark)

5

6 (a) Complete the following table for an atom of uranium-238 $\binom{238}{92}$ U).

mass number	238
number of protons	92
number of neutrons	

(1 mark)

o (c) complete the following sentence	6	(b)	Complete the following sentence
---------------------------------------	---	-----	---------------------------------

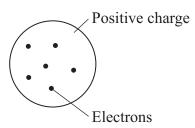
The name given to the number of protons in an atom is the proton number or the

(1 mark)

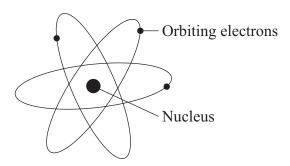
- 6 (c) An atom of uranium-238 ($_{92}^{238}$ U) decays to form an atom of thorium-234 ($_{90}^{234}$ Th).
- 6 (c) (i) What type of radiation, alpha, beta or gamma, is emitted by uranium-238?

(1 mark)

6 (c) (ii) Why does an atom that decays by emitting alpha or beta radiation become an atom of a different element?


.....

(1 mark)


4

7 In the early part of the 20th century, scientists used the 'plum pudding' model to explain the structure of the atom.

Following work by Rutherford and Marsden, a new model of the atom, called the 'nuclear' model, was suggested.

8

7	(b)	at a very thin sheet of gold. Over a period of several months, the scientists made over 100 000 measurements. These measurements showed that:
		• a very small number of alpha particles were deflected backwards from the gold foil.
		Use the nuclear model to explain this experimental result.
		(2 marks)
		(2 marks)
7	(c)	Why did the work of Rutherford and Marsden convince many scientists that the 'plum pudding' model of the atom was incorrect?
		(2 marks)

END OF QUESTIONS

