C if U can

Shape and space

How will this booklet help you to move from a D to a C grade?

- The topic of shape and space is split into five units - angles, transformations, the circle, area and volume and Pythagoras and trigonometry
- For each unit, you start by thinking about which types of question you are confident with, which types you're not sure about and which types cause you a real problem and assess yourself using the grid
- You then try some questions similar to those you have seen before - usually D grade questions so you can see whether your self assessment is accurate
- You then have some questions to try which are harder - these are C grade questions. There are hints to help you if you don't know where to start
- There are also some C grade questions with even bigger hints available from your teacher if you need them and there are also some C grade questions with no help (also available from your teacher) for when you feel brave enough!

The diagram shows a circle of diameter 70 cm inside a square of side 70 cm .

Work out the area of the shaded part of the diagram
Give your answer correct to 3 significant figures

CLUE:-
Don't forget, you need the radius to find the area of the circle - then subtract from the area of the square

Mary has a circular dining table with a radius of 0.65 m
a. work out the area of the top of the table. Give your answers correct to 3 significant figures

The perimeter of the circular table cloth is 5 m
b. work out the diameter of the table cloth

CLUE:-

For the table cloth, you need the formula for the circumference but the unknown will be the diameter, so change the subject of the formula

Diagram not
accurately drawn
P, Q, R and S are points on the circumference of a circle, centre 0 .
$P R$ is a diameter of the circle.
Angle $P S Q=56^{\circ}$
a. find the size of angle $P Q R$. Give a reason for your answer
b. find the size of angle PRQ. Give a reason for your answer
c. find the size of angle POQ. Give a reason for your answer

CLUE:-

Draw a line from O to Q if it helps

You have seen simple questions
like these before

C een it B4

The radius of a circle is 5.2 m Work out the circumference of the circle. Give your answer correct to 2 d . p.
 diameter of 0.8 m . the wheel goes round 25 times. How far has the cycle moved. Give your answer to 3 sig. figs

Assess how well you think you understand this topic before you start. Are you confident, close or clueless?

Calculate the perimeter of 2D shapes			
Calculate the area of 2D shapes			
Calculate the volume of cuboids and prisms			
Calculate the surface area of 3D shapes with triangular and rectangular faces			
Solve problems involving volumes of 3D shapes			

C if U can

 Area and volume d ConfidentClose
Clueless At the end of the section, think about your self assessment. Were you right?

You should recognise this type of question

Work out the area of this trapezium.

Work out the volume of this cuboid.

A cuboid has
Height $=3 \mathrm{~m}$
Length $=9 \mathrm{~m}$
Width $=5 \mathrm{~m}$
What is its volume?

Assess how well you think you understand this topic before you start. Are you confident, close or clueless?

Know and use the vocabulary associated with circles			
Calculate the circumference of a circle given either the length of the radius or the diameter			
Calculate the area of a circle given either the length of the radius or the diameter			
Solve problems involving the circumference and area of a circle			
Know and use angles associated with circles			

At the end of the section, think about your self assessment. Were you right?

Shape A is shown in the diagram. Shape A is enlarged to obtain the shape B
a. write down the scale factor of the enlargement
b. Complete the drawing of shape B on the diagram

CLUE:-
Sometimes 'enlarged' doesn't really mean enlarged, does it?

Remember, a cube is a cuboid with all edges equal in length

A cuboid has
Volume $=163 \mathrm{~cm}^{3}$
Length $=8 \mathrm{~cm}$
Height $=4 \mathrm{~cm}$
Work out the width of the cuboid

A box in the shape of a cube has sides of length 2 cm .
These cube boxes are placed into a larger cuboid box with dimensions

Height $=8 \mathrm{~cm}$
Length $=10 \mathrm{~cm}$
Width $=6 \mathrm{~cm}$
How many cubed boxes fit into the cuboid box exactly?

A light bulb box measures 6 cm by 6 cm by 10 cm .
Light bulb boxes are packed into cartons.
A carton measures 30 cm by 30 cm by 80 cm
Work out the number of light bulb boxes which can completely fill one carton

CLUE :-

Work out how many fit on the bottom layer first

Shapes ABCD and EFGH are mathematically similar.
a. calculate the length of $B C$
b. calculate the length of EF

CLUE :-
Look at the relationship between AD and EH first

The shape P has been drawn on the grid.
a. Reflect the shape P in the y axis. Label the image Q
b. Rotate the shape Q through 180° about $(0,0)$. Label this image R.
c. Describe fully the single transformation which maps the shape P to the shape R

CLUE:-

Most people find the rotation is the tricky bit. You could use tracing paper to help.

Diagram NOT
accurately drawn

Work out the surface area of the triangular prism.
State the units with your answer.
CLUE:-
Imagine the net of this shape - work out the area of each face. Don't forget the units

This shape is the cross section of a prism 10 cm long

Calculate the volume of the prism

CLUE:-
Split the shape into a rectangle and a triangle first to find the cross sectional area

C een it B4

Assess how well you think you understand this topic before you

C if U can

Pythagoras start. Are you confident, close or clueless?

Assess how well you think you understand this topic before you start. Are you confident, close or clueless? C if U can Pythagoras		$\begin{aligned} & \ddot{0} \\ & \stackrel{0}{U} \end{aligned}$		At the end of the section, think about your self assessment. Were you right?
Use Pythagoras theorem to find the hypotenuse (longest side) of a right angle triangle				
Use Pythagoras theorem to find one of the two shorter sides of a right angle triangle				
Use Pythagoras theorem to solve problems				
Use Pythagoras theorem to solve problems that need other maths as well in the same question				
Work out what kind of maths is needed to answer a question				

C if U can				
Can you cope with these? Transformation		\%	n $\frac{0}{0}$ U	At the end of the section, review
Reflect a 2D shape in a vertical, horizontal or diagonal line and state the equation of the line.				your self assessment. Were you right?
Rotate a 2D shape about a point and state the angle, direction and centre of rotation				
Translate a 2D shape and describe the translation in words.				
Enlarge 2D shapes using positive scale factors				
Use scale factors to solve problems involving similar shapes				

$A B C D E F$ is a regular pentagon.
$A E F$ and CDF are straight lines.
Work out the size of angle DFE.
Give a reason for your answer.

CLUE:-
Think about how you might find angle FDE or DEF. How might this help?

Angle $A B C=90^{\circ}$
$A C=12.6 \mathrm{~cm}$
$B C=4.7 \mathrm{~cm}$
Work out the length of $A B$.
Give your answer correct to 3 significant figures

CLUE:-

Don't forget to round your answer at the end

Measure and write down the bearing of
a. Halifax from Wigan
b. Preston from Manchester

CLUE:-

Remember bearings are measured clockwise from North - part b is trickier
:

$P A C Q$ is a straight line.
$A B$ and $C D$ are parallel.
Angle $P A B=(2 x)^{\circ}$
Angle $Q C D=(x+15)^{\circ}$
Work out the value of x

CLUE:-
What do $2 x+x+15$ add up to?

The diagram shows the end, $A B C D$, of a shed.
The shed is standing on horizontal ground.
Calculate the area of the end of the shed

CLUE:-

Draw a line to make this shape a rectangle and a triangle. Use Pythagoras to work out the width of the rectangle

A, B, C and D are four points on the
circumference of a circle.
$A B C D$ is a square with sides 20 cm
long.
Work out the diameter of the
circle
Give your answer correct to 3
significant figures.

CLUE:-
Pythagoras might help! The diameter of the circle is the diagonal of the square!

Find angles x and y. Give reasons for your answers

Find all of the missing angles in this question, giving a reason for each.

C een it B4

Measure the bearing of

1. A from B
2. B from A

A

Assess how well you think you understand this topic before you start. Are you confident, close or clueless?

Work out angles involving parallel lines, around a point, on a straight line and inside circles			
Work out angles in polygons (shapes with straight edges)			
Draw and measure bearings accurately			
Construct 2D shapes, perpendicular bisectors (at right angles) and angle bisectors (cut in two)			
Construct scale drawings			

At the end of the section, think about your self assessment. Were you right?

