

How will this booklet help you to move from a D to a C grade?

- The topic of algebra is split into six units - substitution, expressions, factorising, equations, trial and improvement and inequalities and graphs.
- For each unit, you start by thinking about which types of question you are confident with, which types you're not sure about and which types cause you a real problem and assess yourself using the grid
- You then try some questions similar to those you have seen before - usually D grade questions so you can see whether your self assessment is accurate
- You then have some questions to try which are harder - these are C grade questions. There are hints to help you if you don't know where to start
- There are also some C grade questions with even bigger hints available from your teacher if you need them and there are also some C grade questions with no help (also available from your teacher) for when you feel brave enough!

Factorise completely

$$
3 x^{2}+6 x y
$$

CLUE:-

Completely is the key word! Are you sure there's nothing else to do?

Expand and simplify
 $(3 x+2)(4 x+1)$

CLUE:-

Don't forget to simplify at the end

Factorise

1. $9 x+12$
2. $x^{2}+x$

CLUE:-
In part $2, x$ is $1 x$. You are looking for what is common in both values.

Perimeter $=39 \mathrm{~cm}$

Find the value of t.

Solve the following equations:-
$\frac{(12+x)}{3}=5$
$\frac{x}{3}-5=3$

Solve this equation

$$
5-3 x=2(x+1)
$$

CLUE:-

Brackets first.

Remember, 2 brackets with 2 values inside gives 4 values before you simplify them.

Expand these brackets:-
Factorise:-

- $(x+1)(x+3)$
- $(x-6)(x+2)$
- $(x-4)(x+7)$
- $x^{2}+3 x+2$
- $x^{2}+7 x+12$
- $x^{2}+2 x-15$
- $x^{2}-2 x-35$

Solve this equation

$$
\frac{40-x}{3}=4+x
$$

Deal with the 3 first.

Solve this equation

$$
7(x+2)=\frac{5 x+1}{2}
$$

CLUE:-

Brackets first, then the 2

A shop sells doughnuts and muffins. Doughnuts cost d pence each. Muffins cost m pence each. Daniel buys 4 doughnuts and 3 muffins.

The total cost is C pence.

Write down a formula for C in terms of d and m

CLUE:-
So C will be the subject of the formula. If it helps, write it in words first.

The diagram shows a rectangle $A B C D$. The measurements are in centimetres. Write an expression, in terms of x, for the area of the rectangle $A B C D$.

CLUE :-
The question doesn't ask what the area is, just for an expression (or formula) which will help find the area. Write an expression in each part of the rectangle.

Here are some expressions. Two of the expressions always have the same value as $4 y$. Circle the ones always equal to $4 y$

- $2(y+y)$
- $2 y+y$
- $2 y \times 2 y$
- $2 y+2 y$
- $2+2 y$

CLUE:-

Some of these expressions will sometimes be equal to $4 y$. The questions says always

Use trial and improvement to solve

$$
x^{3}+2 x=50
$$

where \times lies between 3 and 4

Use trial and improvement to solve

$$
\frac{1}{2} x^{3}-x=90
$$

where x lies between 5 and 6

These are very similar, just a bit harder!

Now C if U can do these.

Solve the inequality

$$
4 x-3<7
$$

CLUE:-

Start by adding 3 to both sides

Find the perimeter of this shape:-

X is an integer, such that
$-3<x \leq 2$
list all the possible values of x

CLUE:-
Don't forget the difference between the two signs here. Integers are whole numbers

The equation

$$
x^{3}-15 x=31
$$

Has a solution between 4 and 5 .

Use a trial and improvement method to find this solution. Give your answer to 1 decimal place.
 You must show all your working.

CLUE:-
Make sure you go through enough steps.

The number of diagonals, D, of a polygon with n sides is given by the formula

$$
D=\frac{n^{2}-3}{2}
$$

A polygon has 20 sides.
Work out the number of diagonals of this polygon

CLUE:-
Where do you substitute the 20? Work out the top first!

$$
P=x^{2}-7 x
$$

Work out the value of P when $x=-5$

CLUE:-

Remember x has a negative value - what happens when you square it?

$$
\begin{gathered}
P=3 a+5 b \\
a=5 \cdot 8 \\
b=-3 \cdot 4 \\
\text { Work out the value of } P
\end{gathered}
$$

CLUE:-
 Remember b has a negative value

Complete the table of values for the
function
$y=\frac{1}{2} x+7$

Plot the function
$y=\frac{1}{2} x+7$
on the grid

Complete the table of values for

$$
y=2 x-1
$$

x	-2	-1	0	1	2	3
y						

Then draw the graph and use the graph to find

1. the value of y when $x=-1 \cdot 4$
2. the value of x when $y=3 \cdot 8$

CLUE:-

This graph may be a bit small. If so, re-draw it

Careful - these questions don't us	stitute' - but that's what you're doing!
Evaluate $A=3(2 b-4)$ when	Given that
1. $\mathrm{b}=-2$	$P=Q^{2}-2 Q$
	Find the value of P when $Q=-3$

Complete the table of values for

$$
y=x^{3}+x-2
$$

then draw the graph on the grid

x	-2	-1	0	1	2
y	-12			0	

CLUE:-
Take care with the negative numbers. This will make a curve because of the \boldsymbol{X}^{3}.

CLUE:-
Think about the numbers in the table of values.
Look at the graph for a hint.

Can you cope with these questions? Decide how good you think you are before you look at the examples - are you confident, close or clueless?

Substitute positive and negative numbers into expressions.			
Substitute positive and negative numbers into equations and formulae.			
Substitute where you may have to square a number.			
Simplify by collecting like terms and then use substitution			
Write equations and formulae from information and then substitute numbers into them.			

At the end of the section, think about your self assessment. Would you make the same judgement now? Make any notes you need to here

